3.20.38 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{(d+e x)^3} \, dx\) [1938]

3.20.38.1 Optimal result
3.20.38.2 Mathematica [A] (verified)
3.20.38.3 Rubi [A] (verified)
3.20.38.4 Maple [B] (verified)
3.20.38.5 Fricas [A] (verification not implemented)
3.20.38.6 Sympy [F(-1)]
3.20.38.7 Maxima [F(-2)]
3.20.38.8 Giac [A] (verification not implemented)
3.20.38.9 Mupad [F(-1)]

3.20.38.1 Optimal result

Integrand size = 37, antiderivative size = 244 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^3} \, dx=\frac {5 \left (c d^2-a e^2\right ) \left (c d^2+a e^2+2 c d e x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 e^3}-\frac {5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e^2}+\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{e (d+e x)^2}-\frac {5 \left (c d^2-a e^2\right )^3 \text {arctanh}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{16 \sqrt {c} \sqrt {d} e^{7/2}} \]

output
-5/3*c*d*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/e^2+2*(a*d*e+(a*e^2+c*d^2 
)*x+c*d*e*x^2)^(5/2)/e/(e*x+d)^2-5/16*(-a*e^2+c*d^2)^3*arctanh(1/2*(2*c*d* 
e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2) 
^(1/2))/e^(7/2)/c^(1/2)/d^(1/2)+5/8*(-a*e^2+c*d^2)*(2*c*d*e*x+a*e^2+c*d^2) 
*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/e^3
 
3.20.38.2 Mathematica [A] (verified)

Time = 0.42 (sec) , antiderivative size = 183, normalized size of antiderivative = 0.75 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^3} \, dx=\frac {\sqrt {e} (a e+c d x) (d+e x) \left (33 a^2 e^4+2 a c d e^2 (-20 d+13 e x)+c^2 d^2 \left (15 d^2-10 d e x+8 e^2 x^2\right )\right )-\frac {15 \left (c d^2-a e^2\right )^3 \sqrt {a e+c d x} \sqrt {d+e x} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {e} \sqrt {a e+c d x}}\right )}{\sqrt {c} \sqrt {d}}}{24 e^{7/2} \sqrt {(a e+c d x) (d+e x)}} \]

input
Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(d + e*x)^3,x]
 
output
(Sqrt[e]*(a*e + c*d*x)*(d + e*x)*(33*a^2*e^4 + 2*a*c*d*e^2*(-20*d + 13*e*x 
) + c^2*d^2*(15*d^2 - 10*d*e*x + 8*e^2*x^2)) - (15*(c*d^2 - a*e^2)^3*Sqrt[ 
a*e + c*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])/(Sqrt[e 
]*Sqrt[a*e + c*d*x])])/(Sqrt[c]*Sqrt[d]))/(24*e^(7/2)*Sqrt[(a*e + c*d*x)*( 
d + e*x)])
 
3.20.38.3 Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 264, normalized size of antiderivative = 1.08, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.135, Rules used = {1130, 1131, 1087, 1092, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{(d+e x)^3} \, dx\)

\(\Big \downarrow \) 1130

\(\displaystyle \frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{e (d+e x)^2}-\frac {5 c d \int \frac {\left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right )^{3/2}}{d+e x}dx}{e}\)

\(\Big \downarrow \) 1131

\(\displaystyle \frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{e (d+e x)^2}-\frac {5 c d \left (\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 e}-\frac {\left (c d^2-a e^2\right ) \int \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}dx}{2 e}\right )}{e}\)

\(\Big \downarrow \) 1087

\(\displaystyle \frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{e (d+e x)^2}-\frac {5 c d \left (\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 e}-\frac {\left (c d^2-a e^2\right ) \left (\frac {\left (a e^2+c d^2+2 c d e x\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 c d e}-\frac {\left (c d^2-a e^2\right )^2 \int \frac {1}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{8 c d e}\right )}{2 e}\right )}{e}\)

\(\Big \downarrow \) 1092

\(\displaystyle \frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{e (d+e x)^2}-\frac {5 c d \left (\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 e}-\frac {\left (c d^2-a e^2\right ) \left (\frac {\left (a e^2+c d^2+2 c d e x\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 c d e}-\frac {\left (c d^2-a e^2\right )^2 \int \frac {1}{4 c d e-\frac {\left (c d^2+2 c e x d+a e^2\right )^2}{c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}d\frac {c d^2+2 c e x d+a e^2}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}}{4 c d e}\right )}{2 e}\right )}{e}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{e (d+e x)^2}-\frac {5 c d \left (\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 e}-\frac {\left (c d^2-a e^2\right ) \left (\frac {\left (a e^2+c d^2+2 c d e x\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 c d e}-\frac {\left (c d^2-a e^2\right )^2 \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 c^{3/2} d^{3/2} e^{3/2}}\right )}{2 e}\right )}{e}\)

input
Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(d + e*x)^3,x]
 
output
(2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(e*(d + e*x)^2) - (5*c*d 
*((a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(3*e) - ((c*d^2 - a*e^2)*( 
((c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/ 
(4*c*d*e) - ((c*d^2 - a*e^2)^2*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt 
[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(8*c^(3 
/2)*d^(3/2)*e^(3/2))))/(2*e)))/e
 

3.20.38.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1087
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x) 
*((a + b*x + c*x^2)^p/(2*c*(2*p + 1))), x] - Simp[p*((b^2 - 4*a*c)/(2*c*(2* 
p + 1)))   Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && 
GtQ[p, 0] && (IntegerQ[4*p] || IntegerQ[3*p])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1130
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[(d + e*x)^(m + 1)*((a + b*x + c*x^2)^p/(e*(m + p + 1))), x] 
- Simp[c*(p/(e^2*(m + p + 1)))   Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^(p 
 - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] 
 && GtQ[p, 0] && (LtQ[m, -2] || EqQ[m + 2*p + 1, 0]) && NeQ[m + p + 1, 0] & 
& IntegerQ[2*p]
 

rule 1131
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[(d + e*x)^(m + 1)*((a + b*x + c*x^2)^p/(e*(m + 2*p + 1))), x 
] - Simp[p*((2*c*d - b*e)/(e^2*(m + 2*p + 1)))   Int[(d + e*x)^(m + 1)*(a + 
 b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*d^2 - b 
*d*e + a*e^2, 0] && GtQ[p, 0] && (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && Ne 
Q[m + 2*p + 1, 0] && IntegerQ[2*p]
 
3.20.38.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(488\) vs. \(2(216)=432\).

Time = 2.88 (sec) , antiderivative size = 489, normalized size of antiderivative = 2.00

method result size
default \(\frac {\frac {2 \left (c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {7}{2}}}{\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )^{3}}-\frac {8 c d e \left (\frac {2 \left (c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {7}{2}}}{3 \left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )^{2}}-\frac {10 c d e \left (\frac {\left (c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {5}{2}}}{5}+\frac {\left (e^{2} a -c \,d^{2}\right ) \left (\frac {\left (2 c d e \left (x +\frac {d}{e}\right )+e^{2} a -c \,d^{2}\right ) \left (c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}{8 c d e}-\frac {3 \left (e^{2} a -c \,d^{2}\right )^{2} \left (\frac {\left (2 c d e \left (x +\frac {d}{e}\right )+e^{2} a -c \,d^{2}\right ) \sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}{4 c d e}-\frac {\left (e^{2} a -c \,d^{2}\right )^{2} \ln \left (\frac {\frac {e^{2} a}{2}-\frac {c \,d^{2}}{2}+c d e \left (x +\frac {d}{e}\right )}{\sqrt {c d e}}+\sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\right )}{8 c d e \sqrt {c d e}}\right )}{16 c d e}\right )}{2}\right )}{3 \left (e^{2} a -c \,d^{2}\right )}\right )}{e^{2} a -c \,d^{2}}}{e^{3}}\) \(489\)

input
int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^3,x,method=_RETURNVERB 
OSE)
 
output
1/e^3*(2/(a*e^2-c*d^2)/(x+d/e)^3*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^( 
7/2)-8*c*d*e/(a*e^2-c*d^2)*(2/3/(a*e^2-c*d^2)/(x+d/e)^2*(c*d*e*(x+d/e)^2+( 
a*e^2-c*d^2)*(x+d/e))^(7/2)-10/3*c*d*e/(a*e^2-c*d^2)*(1/5*(c*d*e*(x+d/e)^2 
+(a*e^2-c*d^2)*(x+d/e))^(5/2)+1/2*(a*e^2-c*d^2)*(1/8*(2*c*d*e*(x+d/e)+e^2* 
a-c*d^2)/c/d/e*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(3/2)-3/16*(a*e^2-c 
*d^2)^2/c/d/e*(1/4*(2*c*d*e*(x+d/e)+e^2*a-c*d^2)/c/d/e*(c*d*e*(x+d/e)^2+(a 
*e^2-c*d^2)*(x+d/e))^(1/2)-1/8*(a*e^2-c*d^2)^2/c/d/e*ln((1/2*e^2*a-1/2*c*d 
^2+c*d*e*(x+d/e))/(c*d*e)^(1/2)+(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1 
/2))/(c*d*e)^(1/2))))))
 
3.20.38.5 Fricas [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 534, normalized size of antiderivative = 2.19 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^3} \, dx=\left [\frac {15 \, {\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt {c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} - 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {c d e} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) + 4 \, {\left (8 \, c^{3} d^{3} e^{3} x^{2} + 15 \, c^{3} d^{5} e - 40 \, a c^{2} d^{3} e^{3} + 33 \, a^{2} c d e^{5} - 2 \, {\left (5 \, c^{3} d^{4} e^{2} - 13 \, a c^{2} d^{2} e^{4}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{96 \, c d e^{4}}, \frac {15 \, {\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt {-c d e} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-c d e}}{2 \, {\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} + {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right ) + 2 \, {\left (8 \, c^{3} d^{3} e^{3} x^{2} + 15 \, c^{3} d^{5} e - 40 \, a c^{2} d^{3} e^{3} + 33 \, a^{2} c d e^{5} - 2 \, {\left (5 \, c^{3} d^{4} e^{2} - 13 \, a c^{2} d^{2} e^{4}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{48 \, c d e^{4}}\right ] \]

input
integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^3,x, algorithm=" 
fricas")
 
output
[1/96*(15*(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6)*sqrt(c*d 
*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 - 4*sqrt(c*d 
*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e 
) + 8*(c^2*d^3*e + a*c*d*e^3)*x) + 4*(8*c^3*d^3*e^3*x^2 + 15*c^3*d^5*e - 4 
0*a*c^2*d^3*e^3 + 33*a^2*c*d*e^5 - 2*(5*c^3*d^4*e^2 - 13*a*c^2*d^2*e^4)*x) 
*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c*d*e^4), 1/48*(15*(c^3*d^6 
 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6)*sqrt(-c*d*e)*arctan(1/2*sq 
rt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt 
(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)) + 2* 
(8*c^3*d^3*e^3*x^2 + 15*c^3*d^5*e - 40*a*c^2*d^3*e^3 + 33*a^2*c*d*e^5 - 2* 
(5*c^3*d^4*e^2 - 13*a*c^2*d^2*e^4)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a* 
e^2)*x))/(c*d*e^4)]
 
3.20.38.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^3} \, dx=\text {Timed out} \]

input
integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/(e*x+d)**3,x)
 
output
Timed out
 
3.20.38.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^3} \, dx=\text {Exception raised: ValueError} \]

input
integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^3,x, algorithm=" 
maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e*(a*e^2-c*d^2)>0)', see `assume 
?` for mor
 
3.20.38.8 Giac [A] (verification not implemented)

Time = 0.35 (sec) , antiderivative size = 235, normalized size of antiderivative = 0.96 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^3} \, dx=\frac {1}{24} \, \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e} {\left (2 \, {\left (\frac {4 \, c^{2} d^{2} x}{e} - \frac {5 \, c^{4} d^{5} e - 13 \, a c^{3} d^{3} e^{3}}{c^{2} d^{2} e^{3}}\right )} x + \frac {15 \, c^{4} d^{6} - 40 \, a c^{3} d^{4} e^{2} + 33 \, a^{2} c^{2} d^{2} e^{4}}{c^{2} d^{2} e^{3}}\right )} + \frac {5 \, {\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \log \left ({\left | -c d^{2} - a e^{2} - 2 \, \sqrt {c d e} {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} \right |}\right )}{16 \, \sqrt {c d e} e^{3}} \]

input
integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^3,x, algorithm=" 
giac")
 
output
1/24*sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e)*(2*(4*c^2*d^2*x/e - (5*c^ 
4*d^5*e - 13*a*c^3*d^3*e^3)/(c^2*d^2*e^3))*x + (15*c^4*d^6 - 40*a*c^3*d^4* 
e^2 + 33*a^2*c^2*d^2*e^4)/(c^2*d^2*e^3)) + 5/16*(c^3*d^6 - 3*a*c^2*d^4*e^2 
 + 3*a^2*c*d^2*e^4 - a^3*e^6)*log(abs(-c*d^2 - a*e^2 - 2*sqrt(c*d*e)*(sqrt 
(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))))/(sqrt(c*d*e)*e^ 
3)
 
3.20.38.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^3} \, dx=\int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{5/2}}{{\left (d+e\,x\right )}^3} \,d x \]

input
int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/(d + e*x)^3,x)
 
output
int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/(d + e*x)^3, x)